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Existing and new particle loading and injection algorithms for particle simulations
are analyzed to determine numerical accuracy and computational efficiency. Empha-
sis has been placed on loading and emission of Maxwellian, drifting Maxwellian,
and cutoff Maxwellian velocity distributions. Once a velocity distribution has been
inverted for loading or injection, time-centering of the position and velocity is neces-
sary in order to maintain second-order accuracy. Here, the accuracy of these methods
is determined and compared to three analytic test cases with spatially varying, time-
dependent, and time-independent electric fields in a homogeneous magnetic field
and a self-consistent crossed-field diode. The initial push is shown to be important
in calculating the correct electric field at the boundary where particles are injected,
in relaxing constraints on the time step, and in providing reliable field fluctuations
due to particle statistics. c© 2000 Academic Press

1. INTRODUCTION

We first observed injection difficulties when detailed comparisons were made between
1d and 2d diodes [1–3] when using common particle loading and injection algorithms. The
phase space plots (position-velocity; Fig. 1) showed incorrect velocities with small gaps
(incorrect position) in emission. The culprit was initiating the leap-frog integrator with
velocity,v, and position,x, at the same time;v andx should be1t/2 apart in time in order
to obtain second-order accuracy. The result of not time-centering the velocity and position
correctly was a zero-order error in each emitted particle.

For some models, this error might have a small or unnoticeable effect on the simulation.
However, in models we were (and are) studying for noise and stability in cross field devices,
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FIG. 1. The particle phase space near the cathode emitter in equilibrium with the critical current injected for
the zero-order injection model and the new second-order accuracy injection method.

these errors were unacceptable. Hence, the choice was to devise a second-order accurate
method to start the leap-frog integrator.

The initial conditions of the particle distribution function,f (x, v, t = 0), wherex, v,
and t are the position, velocity, and time, respectively, are important in determining the
later behavior of the system, especially for the study of transients or instabilities. The
distribution function continues to be important for simulations with collisions using Monte
Carlo collision (MCC) packages, but the emphasis here is long time (longer than an ion
transit time) scale developments. The boundary condition of the particle distribution,f (x =
wall, v, t) (for example, thermionic, field, or secondary emission), which may be a function
of time, is also important in determining the continuing behavior of the system. These
considerations are especially important for modeling diodes [4], electron guns [5], crossed-
field emission [4, 6, 7], multipactor breakdown [8], and any time particle emission is near the
space charge limit [9]. Incorrect loading and injection can often manifest itself in nonobvious
ways, such as larger than expected field fluctuations; this will be discussed in detail later.

Chapter 16 of Birdsall and Langdon [10] discusses some methods in wide use for inverting
densities n(x) and f(v) as well as the particle flux,Γ = v⊥ f (x = wall, v, t), wherev⊥ is
the velocity perpendicular to the wall. Although these boundary conditions are required for
many bounded PIC codes, a comprehensive accuracy or error analysis has not appeared in
the literature. The purpose of this paper is to expand upon the commonly used injection and
loading schemes, adding an analysis of the accuracy of a number of techniques. This paper
discusses techniques for converting model distributions (stated withx andv given at the
same time) intox andv suitable for the common second-order accurate leap-frog integrator
(with x andv half a time step,1t/2, apart).

The organization of this paper is as follows. First, we will discuss and define cumula-
tive distribution and scalings used in this paper. Second, we will review the inversion of
Maxwellian distributions and fluxes with the addition of refinements to improve numerical
accuracy and efficacy. Last, we will discuss several new methods for time-centering parti-
cles injected from the edge of the simulation and compare the results of these new methods
in a crossed-field diode.

1.1. Motivation

In order to demonstrate the error, we present highlights of injection in a magnetized
crossed-field diode, previously simulated and published by Verboncoeur and Birdsall [4]
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FIG. 2. Model for the three cases and self-consistent examples. The cathode is atx = 0.

using the particle-in-cell (PIC) code XPDP1 (X-window plasma device planar one-dimensi-
onal) [11]. A diagram of the diode is shown in Fig. 2, and the physical and numerical
parameters are summarized in Table II; the complete behavior is given in Section 3.4. The
theory for this diode was derived by Lauet al. [12].

Compared to the theoretical predictions, XPDP1 version 3.1 (which used the old initial
advance forx andv) obtains a small 0.2% error in the critical current and a large 64% error
in the cathode electric field and surface charge. Using the second-order initial step presented
in this paper, with the same numerical parameters, results in a less than 3× 10−5% error in
the critical current, and a 4% error in the expected cathode electric field. These errors also
illustrate that not all parameters in a simulation are affected equally by the initial push. The
critical current is insensitive to the initial push while the surface field was sensitive.

Phase space near the cathode, when the simulation is in equilibrium, is shown for both
old (zeroth-order) and new (second-order) initial step algorithms in Fig. 1. The phase space
shows the results of using the more accurate injection push; first, it removes the incorrect
spacing of particles in the successive time steps. Second, the correct positions of the particles
produce a space charge different than the incorrect injection; thus, the electric field that was
used in the second-order injection method is different from that produced by the zero-order
injection. These changes in the equilibrium state agree better with theory [12].

1.2. Background

In the literature, papers that discuss particle injection and loading are usually focused on
reducing macroparticle induced noise in PIC simulations by careful ordering of the particles
in position and velocity space, called aquiet start. These ordering methods are first attributed
to J. A. Byers in 1970 [13] and discussed and reviewed in 1980 by Denavit and Kruer [14].
While quiet starts are not the main focus of this paper they are applicable to the inversion
algorithms presented here. Quiet starts are most useful in transient or instability growth
simulations when low initial noise levels are important. Indeed, the intent of a quiet start is
to postpone the development of thermal fluctuations in a simulation; it cannot prevent them.
The following is a brief literature review of the different methods proposed for reducing the
injection and loading noise in a PIC simulation.

In 1971, Morse and Nielson [15] readjusted randomly picked velocities so that the first
moment (momentum) in each cell was equal to that of the initial distribution function. This
technique was expanded upon by Gitomer in the same year [16] so that both the first and
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the second (energy) moments were correct. These methods yield a small reduction of noise
but do not have the numerical problems of the following schemes.

In 1972, Denavit [17] used a hybrid PIC model and numerical solutions of the Vlasov
equation in order to reduce noise in phase space. The distribution function is recon-
structed periodically, as in Vlasov solutions, by a local averaging operation in phase
space. This distribution function is inverted to obtain particle velocities using the variable
weights. The analysis of this variable weighting method was later published by Gitomer and
Adam [18].

Gitomer and Adam [18] discussed two methods; one assigned the velocities in an or-
dered manner and the other varied the particles weights. The first method, ordered velocity
initialization, can give rise to a multibeam instability, which was predicted by Dawson
[19]. The second method, variable particle weights, leads to a multibeam instability [18]
and was later found to have a nonphysical heat exchange between the particles of different
numerical weight [20]. Both of these methods are still useful because these nonphysical
(numerical) problems are significant only in certain parameter regimes, which are discussed
in the articles.

In 1988, Lawson [21] modified the ordered velocity sequencing of Gitomer and Adam
[18] for flux injection, but cooling occurs due to the particles becoming disordered, giving
up energy to the electric field fluctuations.

Inverting a velocity distribution requires an understanding of the ramifications of using
macroparticles. Denavit [22] discusses the effect of discrete particles and discrete particle
position and velocity loading for electrostatic and Darwin (magnetoinductive) field solves.
For simulations that reach a steady state, an understanding of the effects of discrete par-
ticles and fluctuations is important because quiet starts do not reduce the fluctuations in
steady state. Matsuda and Okuda [23] studied numerically and analytically the discrete
particle effect on drag and diffusion of particles in velocity space. Loading and injection
are mentioned briefly in these papers.

1.3. Cumulative Distribution Functions

The cumulative distribution function maps the distribution function variable (e.g., veloc-
ity) to a uniformly distributed set of numbers,R, typically normalized between 0 and 1.
The cumulative distribution,F(v) is

R= F(v) ≡
∫ v
vcl

f (v′) dv′∫ vcu

vcl
f (v′) dv′

, (1)

wherevcl andvcu are the lower and upper cutoffs, respectively. The method of choosingR in
the cumulative distribution function may affect the results of a simulation. The two methods
used to chooseR are pseudorandom or subrandom sequences2. Cumulative distributions

2 A random sequence should uniformly fill in the domain at a rate of 1/
√

N whereN is the number of points.
Many physical processes will fill out a distribution function at this rate. In natural processes,N may be much
larger than can be used in a simulation because of the limitations in memory and speed of the computer. There
are other ways to chooseR in order to fill in the domain more quickly. If the number of particles to be used is
known in advance, theR’s can be distributed uniformly. There are also subrandom sequences in which the relative
error decreases at least as fast as 1/N. Obviously, if the simulation results depend upon the physical fluctuation
scaling law of 1/

√
N, this difference will affect the results. An ideal quiet start would maintain the same scaling
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that cannot be inverted analytically will be inverted numerically. The numerical inversion
consists of making a second-order table and then interpolating the cumulative distribution
function between table values. The whole process is second-order accurate in table value
spacing.

1.4. Definitions and Scaling

Due to the ubiquity of the Maxwellian–Boltzmann velocity distribution, emphasis has
been on loading Maxwellian distributions and injecting Maxwellian fluxes. The meth-
ods presented here are also applicable to any separable continuous distribution function,
f (vx) f (vy) f (vz), with continuous and finite first and second derivatives. (Relativistic ve-
locities have the added complication that the velocity components couple; approximate
decoupling is achieved when the drift is large compared to the thermal velocity.) The
Maxwell–Boltzmann distribution is given by

f (E) ∝ exp

(−E

kT

)
, (2)

wherek is Boltzmann’s constant,E is the kinetic energy, andT is the temperature.
A nonrelativistic anisotropic Maxwellian distribution can be broken into three separate

one-dimensional distributions and then inverted independently; this separation is properly
exploited whenever practicable in this paper. For this work, the definition of thei th com-
ponent of thermal velocity,vt i , is taken to be

1

2
mv2

t i =
1

2
kTi . (3)

The thermal velocity of an isotropic Maxwellian is given by

1

2
mv2

t =
3

2
kT, with v2

t =
3∑

i=1

v2
t i . (4)

Using the 1d definitions (Eq. (3)) a Maxwellian distribution is defined as:

f (v) ∝ e−v
2/2v2

t i . (5)

With these definitions the standard deviation of the distribution isvt i . The velocities in this
paper are normalized byvt i

√
2 (the normalized velocity is equal tov/(vt i

√
2)), in order to

simplify the equations, unless otherwise noted.

law but reduce the proportionality constant. The scaling laws of many quiet start methods are not published; in
the few published cases the scaling deviates from 1/

√
N. Using subrandom sequences is a variation of a quiet

start. Pseudorandom numbers can be replaced with a subrandom or uniform number sequence, if numerical noise
suppression is desired. Bratley and Fox [24] provide a review of (and references for) some of the more notable
examples of subrandom sequences, including bit-reversed, Fibonacci, and Sobol. One note of caution about
using ordered subrandom sequences is that successive numbers fill in gaps left previously in the sequences. A
consequence of the sequence being ordered is that the inversion must start at the beginning. For example, numbers
1 throughN will fill in the space uniformly but numbersN/2 throughN will not. There are also consequences to
the spectral content of the fluctuations. Pseudorandom sequences approach a uniform spectrum in Fourier space as
N increases, but subrandom sequences will have a finite number of Fourier components. The choice of sequence
is a fine tuning knob that the reader may adjust for the application.
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2. LOADING A MAXWELLIAN VELOCITY DISTRIBUTION

The cumulative distribution function for a Maxwellian with both an upper,vcu, and a
lower,vcl , velocity cutoff in one dimension is

F(v) = R=
∫ v
vcl

e−v
′ 2

dv′∫ vcu

vcl
e−v′ 2 dv′

= Erf(v)− Erf(vcl)

Erf(vcu)− Erf(vcl)
, (6)

where Erf is the error function. Solving forv:

v = Erf−1(RErf(vcu)+ (1− R)Erf(vcl)). (7)

With present day digital computers it is faster to tabulate Eq. (6) and then interpolate within
the table than to calculate Eq. (7) for each particle. A table of uniform probability [25] was
calculated using the bisection method (the guaranteed convergence of the bisection method
outweighed the increased convergence of methods such as Newton and secant).

A Maxwellian distribution can also be inverted using the Box–Muller method [26] and
is presented here because it is easily modified for upper cutoff Maxwellian distributions.
This method transforms a uniformly distributed pseudorandom number to a Maxwellian
distribution. First, pick two pseudorandom numbers,ν1 andν2, with 0< ν1, ν2 ≤ 1. Because
of the requirement thatν1 andν2 be uncorrelated, this method is not well suited for use
with subrandom sequences. The sum of the squares,R2 = ν2

1 + ν2
2, is formed. If R2 > 1,

then rejectν1 andν2, otherwise accept them. The Box–Muller transformation returns two
normal deviates,

v1 = ν1

√
− ln(R2)

R2
and v2 = ν2

√
− ln(R2)

R2
. (8)

This is equivalent to invertingv f (v) (see Section 3) and then randomly choosing an angle
to obtain two velocities. To show that this is the correct transformation between uniform
deviates and the distribution function, take the determinant of the Jacobian of the transfor-
mation:

∂(ν1, ν2)

∂(v1, v2)
=
∣∣∣∣∣
∂ν1
∂v1

∂ν1
∂v2

∂ν2
∂v1

∂ν2
∂v2

∣∣∣∣∣ . (9)

If the Jacobian is a product of a function ofv1 and v2 alone, then each velocity is in-
dependently distributed according to each function in the product. The Jacobian for the
Box–Muller transform, Eq. (8), is

∂(ν1, ν2)

∂(v1, v2)
= −exp

(−v2
1

)
exp
(−v2

2

)
. (10)

The domain of the pseudorandom number can be scaled so that that it transforms to
a cutoff Maxwellian distribution. Since the Box–Muller transformation is equivalent to
inverting v f (v) and then randomly choosing an angle (Section 3), it can be solved forv

with an upper cutoff and then an angle can be chosen at random to obtain two velocities. Let
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Rcu = ev
2
cu, wherevcu is the upper velocity cutoff. The transformation for an upper cutoff

Maxwellian is:

v1 = ν1

R

√
v2

cu− ln(R2+ (1− R2)Rcu), and

(11)
v2 = ν2

R

√
v2

cu− ln(R2+ (1− R2)Rcu).

This method is not easily expanded for a lower cutoff; hence, the transformation for a lower
cutoff must be done numerically.

When the desired distribution is a Maxwellian with a nonrelativistic drift component,
the drift, v0, can be added linearly,v′ = v0+ v. For the relativistic case, the addition is
nonlinear; see, for example, Smith [27, p. 117].

2.1. Time-Centering of Loaded Particles

Many PIC codes use a leap-frog integrator in order to integrate the equations of motion
for the particles. In the leap-frog algorithm, the velocities and positions are offset by half a
time step, often called time-centering. In Section 2.7 of Birdsall and Langdon [10] a second-
order method for time-centering particles att = 0 is presented for uniform plasma with the
electron having an initial position of the formxi (t = 0) = xi 0+ xi 1 cos(ksxi 0) with zero
velocity; xi 1 cos(ksxi 0) is a perturbation of equally spaced positions(xi 0). This method is
first-order whenda/dt 6= 0, whenB 6= 0, or whenv0 6= 0, as shown below. This section will
present a generalized second-order method for time-centering particles. In this paper the
velocities have been arbitrarily (but computationally efficient) chosen to lag the positions
at the end of a time step. Time-centering will also be discussed for particle injection in
Section 3.1, applying the same formalism.

To formulate a numerical PIC injection or loading method, one can begin with the Lorentz
equation of motion,

mẍ(t) = qE(x(t), t)+ qv(t)× B(x(t), t), (12)

which can be rewritten as

ẍ(t) = e(x(t), t)+Ä(x(t), t)v(t)× b̂(x(t), t), (13)

wheree= qE/m,Ä = q|B|/m, andb̂ = B/|B|. Continuous quantities will be denoted by
( ), e.g.,E(t) is the electric field as a continuous function of time.

Before discussing the half-step needed for loading, a review of the standard leap-frog
integrator with the magnetic term centered by averaging [10] is presented;

xn+1− xn = vn+1/21t, and
(14)

vn+1/2− vn−1/2 = en1t + tan(Än1t/2)
(
vn−1/2+ vn+1/2

)× b̂n,

wheren indicates the time aftern time steps,tn = n1t . Loading is usually done att = 0
(n = 0), but to maintain generality so that we can use these results for injecting particles
from a boundary (Section 3.1) we will center particles at timetn (time stepn). Discrete
quantities are denoted by subscripts, e.g.,En is the electric field at time stepn. To find the
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order of accuracy these equations may be combined and Taylor expanded aroundtn. The
acceleration truncation error,E, will be defined as the continuous acceleration equation,
Eq. (13), minus the discrete acceleration equation, Eq. (14), at time,tn:

E = ẍ(tn)− (e(x(tn), tn)+Ä(x(tn), tn)v(tn)× b̂(x(tn), tn))

−
(

xn+1− 2xn + xn−1

1t2
−
(

en + tan(Än1t/2)(xn+1− xn−1)× b̂n

1t2

))
. (15)

Assuming that the discrete and continuous fields agree at integer time steps, the error may
be simplified at thenth time step to:

E = ẍ(tn)− xn+1− 2xn + xn−1

1t2

+
(

tan(Än1t/2)(xn+1− xn−1)

1t2 −Ä(x(tn), tn)ẋ(tn)
)
× b̂n. (16)

Taylor expanding in time aroundtn and explicitly writing the second-order error term, we
obtain

E = − 1

12
[dttttx(t)−Ä(x(t), t)(Ä2(x(t), t)ẋ(t)+ 2dtttx(t))× b̂n]1t2+O(1t4), (17)

wheredt×n is shorthand for(d/dt)n andO(1tn) is a vector where the lowest order compo-
nent is ordern. Equation (17) shows that the leap-frog integration is globally second-order
accurate. From Eq. (17) and the velocity update of Eq. (14) one might expect that the
velocity would have a local truncation error ofO(1t3); however, the velocity is only
O(1t2). As shown here by Taylor expanding the position update of Eq. (14) and showing
the second-order term explicitly:

vn+1/2 = xn+1− xn

1t
= v((n+ 1/2)1t)+ 1

24
dtttx(tn)1t2+O(1t3). (18)

It will be shown that the second-order loading (and later the injection) method will have
the sameO(1t2) local truncation error as shown in Eq. (18). The position, as expected,
has a local truncation ofO(1t4), which can be shown from Eqs. (17) and (14). It would
be incorrect to assume that a fourth-order position injection and any second-order velocity
injection would comprise a second-order global method. In this case, the second-order error
in Eq. (18) cancels when it is differenced withvn−1/2 to form the acceleration:

an = vn+1/2 − vn−1/2

1t

= v((n+ 1/2)1t)+ 1
24dttt x(tn)1t2+O(1t3)− (v((n− 1/2)1t)+ 1

24dttt x(tn)1t2 +O(1t3)
)

1t

= v((n+ 1/2)1t)− v((n− 1/2)1t)

1t
+O(1t2). (19)

This shows how the second-order truncation error in velocity cancels when combined to
form the acceleration. This seemingly trivial cancellation is the essence of the difficulty in
forming a second-order truncation error.
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The proper way to obtain the truncation error of a loading or injection method is to
substitute the position and velocity into Eq. (16), the leap-frog error equation:

E = ẍ(tn)− xn+1− xn − vn−1/21t

1t2

+
(

tan(Än1t/2)
(
xn+1− xn + vn−1/21t

)
1t2 −Ä(x(tn), tn)ẋ(tn)

)
× b̂n. (20)

Herexn is the position at time stepn andvn−1/2 is the velocity at time stepn− 1/2, the
first position and velocity after time-centering. For Eq. (20) to be second-order, the local
truncation error in position of the time-centered particle,xn, must be at least fourth-order,
as in standard leap-frog. It is important that the position have the same truncation error
as leap-frog because the particle position,xn, is used in the field solve at time stepn. For
Eq. (20) to be second-order accurate, the velocity of the time-centered particle,vn−1/2,
must have the same second-order local truncation error as leap-frog (Eq. (18)) because the
truncation error cancels as the particle integrator advances (Eq. (19)). Also, it is necessary
to have the velocity error second-order, in order to have accurate current collection for an
electromagnetic field solve. In the analysis of the following methods the truncation error
will be kept through second-order in the Lorentz equation error (Eq. (20)) and third-order
in vn−1/2.

We will analyze two loading methods. The first loading method presented is from Birdsall
and Langdon [10] with an added magnetic field. The second method is a second-order
method for general time-dependent fields.

2.1.1. Half time step push for particle loading.First we will analyze the method of
time-centering presented in Sections 2–7 of Birdsall and Langdon [10] in which the velocity
is pushed back a half-step. This method may be written in the form

vn−1/2− vn = −e
1t

2
− tan(Ä1t/4)

(
vn−1/2+ vn

)× b̂. (21)

Substituting Eq. (21) into the truncation error equation, Eq. (20), then Taylor expanding and
applying the chain rule we obtain a first-order accurate method for general time-dependent
fields. Due to the complexity and length of the analytic expression for the truncation error
for this method with time-dependent fields, the expression is not shown here. The local
truncation error for the half-step velocity,Ev, is second-order.

The above method is first order in general; however, it is second-order under limited
conditions. For an illustration of when this method is second-order we will choose the
magnetic field to be zero; then the truncation error of the above method can be written as

E = −1

6

(
v(tn) · ∇e(tn)+ ∂e(tn)

∂t

)
1t +O(1t2). (22)

This truncation error (Eq. (22)) will be second-order if the velocity(v(tn)) or∇e(tn) is zero
or ∇e(tn) is perpendicular tov(tn) and the derivative of the electric field in time is zero.
These assumptions are true for the loading of the perturbation in Birdsall and Langdon
(Sections 2–7); thus their loading scheme is second-order accurate for that special case.
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The velocity error for zero magnetic field is

Ev = v((n− 1/2)1t)− vn−1/2 = − 1

24
dtttx(tn)1t2− 1

6

(
v(tn) · ∇e(tn)+ ∂e(tn)

∂t

)
1t2.

(23)

Comparing Eq. (23) with the error in the leap-frog velocity, Eq. (18), we see the second
term on the right does not cancel, leaving the velocity with a second order local error term,
which is globally first order in the general case (per Eq. (22)).

2.1.2. General second order time-centering for particle loading.The particle injection
method discussed later (Section 3.1) is a generalization of a second-order loading method
where all the particle velocities and positions are known at timetn. (The injection method
shown later is for particles that are injected at an arbitrary time between time steps.) To
save space we will not derive the specific results here and the more general results later, but
simplify the more general results from Section 3.1. For the second-order injection method
past time step field values are used. However, for the loading previous field values are not
available; instead the time derivative of the fields must be given as an initial condition to
at least first-order. Therefore, the fields needed for the half step push (a simplification of
Eq. (49), with f = 0 and the time index on the fields shifted fromn− 1 ton) are

Äv = Ä(xn, n)− 3

4

∂Ä(xn, n)

∂t
1t − 1

4
vn · ∇Ä(xn, n)1t,

b̂v = b̂(xn, n)− 3

4

b̂(xn, n)

∂t
1t − 1

4
vn · ∇b̂(xn, n), (24)

ev = e(xn, n)− 3

4

e(xn, n)

∂t
1t − 1

4
vn · ∇e(xn, n)1t.

The velocity half-step for the load (a simplification of Eq. (51)) is

v′ − vn = −1

2
ev1t − tan(Äv1t/4)(v′ + vn)× b̂v,

vn−1/2− v′ = 1t2

24

(
e× b̂Ä/1t + (b̂(b̂ · vn)− vn)Ä

2

(25)
+ vn · (∇e+ (∇Ävn)× b̂+Ävn ×∇b̂)

+ ∂e(xn, n)

∂t
+Ävn × ∂b̂(xn, n)

∂t
+ ∂Ä(xn, n)

∂t
vn × b̂

)
.

This simplified version of Eq. (51) is obtained becausexn does not need to be changed to
be time-centered and we have used the relation:

vn = vn+1/2+ vn−1/2

2
+O(1t2). (26)

The local truncation error for the half-step velocity,Ev, hasdtttx(tn)/24 as a second-order
term, which properly cancels in the leap-frog integrator. The global error of the leap-frog
integrator with this time centering is second-order.
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3. INJECTION OF MAXWELLIAN FLUX

The flux of a distribution is used to inject particles from a boundary in the system. The
boundary may represent a physical interface or a computational box to reduce the problem
to a practical size. Since the emission will only occur for velocities moving away from the
boundary, the coordinate system is chosen so that the positive velocities are moving away
from the boundary. A point that is often confused is whether a Maxwellian flux or a drifting
Maxwellian flux model should be applied. The electron flux from a hot (thermionic) cath-
ode is a nondrifting Maxwellian flux, which has an average velocity,vave=

∫∞
0 v f (v) dv.

To model electrons that came from a Maxwellian source and were accelerated (i.e., by
an electric field), a Maxwellian flux with no drift should be inverted (as inverting the
distribution at the source) and then a velocity corresponding to the acceleration should
be added (relativistically or nonrelativistically); a drifting Maxwellian flux should not be
used.

A drifting Maxwellian flux is used to inject a thermalized drifting plasma. The drifting
plasma could be a beam that has thermalized due to Coulomb collisions, normally a long
time (distance) for beams. Also it could be used when the simulation frame is moving
through a resting plasma, for example, a space tether or spacecraft in the rest frame of
the space tether or spacecraft. The computational boundary emitting the flux represents an
infinite plasma.

The normal to the emitting surface defines the direction of the flux at the surface; the
other two directions are not fluxes but distributions (as treated in Section 2). For exam-
ple, in Fig. 2 the emission flux direction normal to the surface is in thex1 direction; in
the transverse directions,x2 and x3, the distribution is inverted (Section 2). The direc-
tion of the velocity of the inverted flux is normal to the wall with a magnitude denoted
by v.

A Maxwellian flux without a drift at the emitting surface can be inverted in closed form,
with or without cutoffs. The cumulative distribution function is

R′ = F(v) =
∫ v
vcl
v′e−v

′ 2
dv′∫ vcu

vcl
v′e−v′ 2 dv′

, (27)

whereR′ is a uniformly distributed pseudorandom number, 0≤ R′ ≤ 1. Equation (27) can
be integrated and then solved for velocity,

v =
√
v2

cl + v2
cu− ln

(
R′ exp

(
v2

cl

)+ (1− R′) exp
(
v2

cu

))
. (28)

For a distribution without cutoffs, this reduces to

v =
√
− ln(1− R′) =

√
− ln(R), (29)

whereR= 1− R′ is a uniformly distributed pseudorandom number, 0< R≤ 1; R= 0
is removed from the domain because an infinite velocity is not easily representable by a
computer.

For a Maxwellian flux with a drift, the velocity cannot be written in closed form. In-
stead, the flux distribution must be inverted numerically. The cumulative distribution for a
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Maxwellian flux with drift and upper and lower cutoffs is

R= F(v) =
∫ v
vcl
v′e−(v

′−v0)
2
dv′∫ vcu

vcl
v′e−(v′−v0)

2
dv′

. (30)

This can be integrated:

R= F(v) = e(vcl−v0)
2 − e(v−v0)

2 +√πv0 Erf(v − v0)−√πv0 Erf(vcl − v0)

e(vcl−v0)
2 − e(vcu−v0)

2 +√πv0 Erf(vcu− v0)−√πv0 Erf(vcl − v0)
. (31)

Forvcu→∞ andvcl→ 0,

R= F(v) = e−v
2
0 − e−(v−v0)

2 +√π v0(Erf(v − v0)+ Erf(v0))

e−v2
0 +√π v0(1+ Erf(v0))

. (32)

The inversion of these equations to obtainv = F−1( f ) must be done numerically. The
numerical inversion was the same as outlined in Section 2. The integration for an arbitrary
distribution can also be done numerically. The effects of discretizing the distribution are
analyzed in Appendix A.

For a Maxwellian flux in which the drift is much larger than the thermal velocity, this
method can be approximated by a drifting Maxwellian as done in Section 2. A drifting
Maxwellian is easily inverted using the Box–Muller transform, whereas for a drifting
Maxwellian flux the inversion must be done numerically; therefore, it is advantageous
to use a drifting Maxwellian wherever appropriate. Most of the error (Maxwellian flux
minus drifted Maxwellian) occurs atv0± 1/

√
2 as shown in Fig. 3 withv0 = 1, 3, 6, and

10. The largest positive error occurs at

vpos= v0+
1−

√
1+ 2e2v2

0π(1+ Erf(v0))
2

2ev
2
0
√
π (1+ Erf(v0))

, (33)

FIG. 3. The absolute error, Maxwellian flux minus the flux of a drifting Maxwellian, as a result of using a
drifting Maxwellian instead of a drifting Maxwellian flux forv0 = 1, 3, 6, and 10 (v0 normalized by

√
2vt i ).
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FIG. 4. The integrated absolute error squared (L2 norm) as a result of using a drifting Maxwellian instead of
a drifting Maxwellian flux.

and the largest negative error occurs at

vneg= v0+
1+

√
1+ 2e2v2

0π(1+ Erf(v0))
2

2ev
2
0
√
π (1+ Erf(v0))

. (34)

An analytic expression for the integrated RMS (L2 norm) error is:

‖error‖L2
= a

2
(
a+ v0ev

2
0
)√−8aev

2
0 − 4v0+ b

(
4a2+ e2v2

0
)
, (35)

where

a = 1√
π(1+ Erf(v0))

and b =
√

2π(1+ Erf(
√

2v0)). (36)

In the limit v0À 1 the‖error‖L2
= 1/(2 4

√
2πv0). The integrated RMS error is shown as

a function ofv0 in Fig. 4. Also, a Maxwellian with a relativistic drift and nonrelativistic
thermal velocity may replace a drifting Maxwellian flux through the use of the relativistic
velocity addition.

3.1. Time-Centering Injected Particles

Time-centering of velocity,v, and position,x, when loading particles is common; how-
ever, time-centering injected particles emitted from the boundaries is not. Figure 5 con-
veys the problem graphically. The authors have found two papers that have some discus-
sion of time-centering at the boundaries. Lawson [28] states the need for particles to be

FIG. 5. To inject a particle in a time-centered manner in the interval(n− 1)1t < t ≤ n1t , the particle needs
to be advanced fromx(t) andv(t) to x(t = n1t) andv(t = (n− 1

2
)1t).
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time-centered, but does not provide a method. Schwager and Birdsall [29] use an energy-
conserving reflection algorithm which time-centers the particle positions and velocities
(due to Lawson), but is not second-order accurate. Many simulations are not sensitive to
the shape of the emitted distribution function. However, it has been observed recently that
in some cases time-centering is critical, such as in cross–field diodes and virtual cath-
ode diodes [2, 3]. Inaccurate emission of a distribution function can be thought of as
changing the shape of the emitted distribution function, which varies during a time step
since the error is a function of when during the time step the particle is injected. The
difference between a non-time-centered distribution and a time-centered distribution is at
most the change in the velocity and position (the placement of the emitter) of a leap-
frog advance. In other word, if the position(xn− f ) and velocity(vn− f ) are used in the
leap-frog advance (Eq. (14)) as(xn) and (vn−1/2) the change in position to(xn+1) and
(vn+1/2) bounds the changes that any of the time-centering methods in this paper gen-
erate during the time-centering procedure. If this difference in distribution function is
unimportant to the results of the simulation the accuracy of the emission can be disre-
garded.

In this section, a second-order accurate method is derived for particle injection at an
arbitrary time with time-dependent, inhomogeneous fields. Derivation of the methods and
an accuracy analysis are in Section 3.2. The performance (computer speed) is discussed in
Section 3.3. Comparison to analytic test problems and a self-consistent simulation are in
Section 3.4.

3.2. Injection Methods

To formulate a numerical PIC injection method, begin with the Lorentz equation of mo-
tion, Eq. (12), just as in the time-centering of loaded particles (Section 2.1). It will be
shown that the second-order injection method will have the sameO(1t2) local trunca-
tion error in (vn−1/2) (as shown in Eq. (18)) so that this error cancels when the particle
integrator advances (as shown in Eq. (19)). The position, as expected, has a local trunca-
tion of O(1t4), which can be shown from Eqs. (17) and (14). It is incorrect to assume
that a fourth-order position injection and any second-order velocity injection would com-
prise a second-order global method because of the cancellation shown in Eq. (19). The
order of the injection method is obtained by substituting the injection velocity and position
algorithm into Eq. (20). For Eq. (20) to be second-order, the local truncation error in po-
sition of the injected particle,xn, is fourth-order, as in standard leap-frog. It is important
that the position has the same truncation error as leap-frog because the particle position,
xn, is used in the field solve at time stepn. Also, the velocity of the injected particle,
vn−1/2, must have the same second-order local truncation error as leap-frog in order to
cancel the second-order error of Eq. (18) when substituted into Eq. (19). It is necessary
to have the velocity error second-order in order to have accurate current collection for an
electromagnetic field solve. In the analysis of the following methods the truncation error
will be kept through second-order in the Lorentz equation error (Eq. (20)) fourth-order in
xn and third-order invn−1/2. In many applications a general second-order method is not
needed because requirements are relaxed; for example, uniform fields or time-independent
fields.

The five injection methods to be presented were chosen for the following reasons. The
method used in the plasma device codes [11] illustrates the inaccuracy of injection when
the problem was observed, which will be referred to as the “simple” injection method.
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The simple Boris3 push with fractional time step is a simple but much improved first-order
method. The next three methods are second-order for special cases. The modified Boris
push with fractional time step is second-order for time-independent uniform fields. The
fractional Boris push with field gradients is second-order for time-independent fields. For
simulation parameters near these special cases the first-order error will be small. The last
method, using field values from the previous time step, is second-order for the general case.
Other second-order special cases may be constructed; for example, past field values can be
used with the modified Boris push if a problem has time-dependent uniform fields.

3.2.1. Historical analysis of simple injection method.The first method to be examined
was implemented in the suite of plasma device codes from Berkeley [11] around 1988:

xn − xn− f = vn− f f1t, and
(37)

vn− 1
2
− vn− f = e(xn− f , n− 1)

(
f − 1

2

)
1t.

Herexn− f andvn− f are the position and velocity, respectively, at the fractional time step of
injection,n− f , where f = δt/1t , 0≤ f < 1. The algorithm that is used to pickf makes
the current as continuous as possible by injecting particles uniformly in time during a time
step. Accumulated current that is a noninteger number of computer particles is carried over
to the next time step. To obtain the truncation error, substitute Eq. (37) into Eq. (20), Taylor
expand around thenth time step, and apply the chain rule:

E = −1

2
(( f 2+ 2 f − 1)Änvn × b̂n + f 2en)+O(1t). (38)

Equation (38) shows that this method is a zeroth-order accurate method. The position is
second-order accurate:

Ex = x(tn)− xn = −1

2
f 2(en +Änvn × b̂n)1t2+O(1t3). (39)

The velocity is first-order accurate:

Ev = v((n− 1/2)1t)− vn−1/2 = −
(

f − 1

2

)
Änvn × b̂n1t +O(1t2). (40)

This method is a poor choice because the lowest-order error in the Lorentz equation is
independent of1t . One consequence of an error term independent of1t is that it renders
a commonly used error checking technique useless. This nonrigorous method for checking
error for a given problem is to measure the result as a function of1t . If the injection error
dominates the truncation error, the zeroth-order error is hidden and changing1t will not
change the error even if it is unacceptable.

3 Both Buneman’s [30] and Boris’s [31] push centers the magnetic term by averaging the velocity, thus obtaining
the same results. However, they obtained the results by two different implementations. Boris’s implementation
has become the standard method and hence we refer to the method as the Boris push.
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3.2.2. Simple Boris push.This method is a generalization of the Boris push using
fractional time steps. The method depends only on the field values at time stepn− 1, of
which the first (zeroth-order) method (called the simple injection method, Section (3.2.1))
is a subset:

vn−1/2− vn− f = ec11t + tan(Äc21t/2)
(
vn−1/2+ vn− f

)× b̂,

xn − xn− f = c3vn− f/21t, and (41)

vn− f/2− vn− f = ec41t + tan(Äc51t/2)
(
vn− f/2+ vn− f

)× b̂.

Here the parameters (c1, . . . , c5) are independent of1t , andvn− f/2 is a fictitious (not accu-
rate) velocity at the fractional time stepn− f/2, andÄ=Ä(xn− f , n− 1), b= b(xn− f , n−
1), ande= e(xn− f , n− 1). Substituting Eq. (41) into the injection truncation error equa-
tion, Eq. (20) and then Taylor expanding, applying the chain rule, and choosing the five
parameters to cancel the error coefficients in the expansions results in a first-order accurate
method for general time-dependent fields. Due to the complexity and length of the analytic
expression for the truncation error for this method with time-dependent fields, the expres-
sion is not shown here. The truncation error for the post-injection position,Ex, is third-order,
and the truncation error for the post-injection velocity,Ev, is second-order. Table III shows
the truncation error for the three test cases that will be described later.

The method withc1 = c2 = f − 1/2, c3 = f , andc4 = c5 = f/2 is rewritten as

vn−1/2− vn− f = e
(

f − 1

2

)
1t + tan

(
Ä

(
f − 1

2

)
1t/2

)(
vn−1/2+ vn− f

)× b̂,

xn − xn− f = f vn− f/21t, and (42)

vn− f/2− vn− f = e
f1t

2
+ tan(Ä f1t/4)

(
vn− f/2+ vn− f

)× b̂.

Thus, from Eq. (42) it is seen that this method is almost as simple as standard leap-frog and
meets the minimum requirement that the error decreases with decreasing1t .

3.2.3. Modified fractional time step Boris push.In this section, the fractional Boris push
is modified to make it second-order accurate for uniform fields. To make an injection method
second-order accurate, the velocity push must have an added term that is independent of
the fractional time step,f , that an injected particle is pushed, but which depends on the
time step for the push,1t . This term is the lowest order truncation term from Eq. (18)
(dtttx(t)1t2/24). As shown in Section 3.2, Eq. (19), the second-order velocity error cancels
in the left hand side of the leap-frog velocity update, Eq. (14), because of symmetry.
On the right hand side of Eq. (14), the second-order velocity error contributes only to
the second-order acceleration error. The entire truncation term (dtttx(t)1t2/24) will be
taken into account later; however, for this method only field terms independent of time
and position will be used to construct this term. Using the normalized Lorentz equation
(Eq. (13)),dtttx(t) for a constant field isdttx(t)× B; this can be calculated efficiently using
(vn+1− f − vn− f )× b̂Ä/1t . Alternatively,dttx(t)× B can be calculated usinge× b̂Ä+
(b̂(b̂ · v̄)− v̄)Ä2; however, this is numerically less efficient becausev̄ is not known.

The position advance, unlike the velocity push, has no cancellation of error terms due
to symmetry. There is a neglecteddtttx(t) term which is taken into account by a term
(vn− f/2− vn− f )× b̂Ä/1t , similar to the velocity update.
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A second-order method for constant fields that incorporates the previously neglected
velocity truncation term (dtttx(t)1t2/24) is:

v′ − vn− f = ec11t + tan(Äc21t/2)(v′ + vn− f )× b̂,

vn+1− f − vn− f = e1t + tan(Ä1t/2)(vn+1− f + vn− f )× b̂,

vn−1/2− v′ = b1(vn+1− f − vn− f )× b̂Ä1t, (43)

xn − xn− f = c3vn− f/21t + b2
(
vn− f/2− vn− f

)× b̂Ä1t2, and

vn− f/2− vn− f = ec41t + tan(Äc51t/2)
(
vn− f/2+ vn− f

)× b̂.

Here the parameters (c1, . . . , c5), Ä, b, vn− f/2, ande are defined as in Section 3.2.2 and
parameters (b1 andb2) are independent of1t . The velocity,v′, is the final velocity in the
fractional time step Boris push method (Section 3.2.2) and is now modified explicitly (all
the other velocity equations of Eq. (43) are implicit) by the truncation term (dtttx(t)1t2/24)
discussed previously. Again substituting Eq. (43) into Eq. (20) and canceling all possible
terms, it is found that this method is first-order for general time-dependent fields, but is
second-order for spatial uniform fields. The truncation error for the injected position,Ex,
is third-order for general time-dependent fields and fourth-order for constant fields. The
truncation error for the injected velocity,Ev, is second-order for general fields, but for
uniform fields the truncation coefficient isdtttx(tn)/24, the same as for leap-frog (Eq. (14)).
This results in a cancellation when going from the injection to the leap-frog integrator. The
method is rewritten as

v′ − vn− f = e
(

f − 1

2

)
1t + tan

(
Ä

(
f − 1

2

)
1t/2

)
(v′ + vn− f )× b̂,

vn+1− f − vn− f = e1t + tan(Ä1t/2)(vn+1− f + vn− f )× b̂,

vn−1/2− v′ = 1

24
(vn+1− f − vn− f )× b̂Ä1t, (44)

xn − xn− f = f vn− f/21t + f 2

12

(
vn− f/2− vn− f

)× b̂Ä1t2,

vn− f/2− vn− f = e
f1t

2
+ tan(Ä f1t/4)

(
vn− f/2+ vn− f

)× b̂.

This method is more complex than the fractional time step Boris push.

3.2.4. Field gradient fractional time step Boris push.This method achieves second-
order accuracy for time-independent fields by using the spatial derivatives ofB andE that
are calculated and used on the injection boundary. This method is based on the modified
fractional time step Boris push of Section 3.2.3. First, the fields that are used are modified
by the derivatives with different constants for the velocity and position integration:

Äv = Ä(xn− f , n− 1)+ d1vn− f · ∇Ä(xn− f , n− 1)1t,

b̂v = b̂(xn− f , n− 1)+ d2vn− f · ∇b̂(xn− f , n− 1)1t,

ev = e(xn− f , n− 1)+ d3vn− f · ∇e(xn− f , n− 1)1t,
(45)

Äx = Ä(xn− f , n− 1)+ d4vn− f · ∇Ä(xn− f , n− 1)1t,

b̂x = b̂(xn− f , n− 1)+ d5vn− f · ∇b̂(xn− f , n− 1)1t, and

ex = e(xn− f , n− 1)+ d6vn− f · ∇e(xn− f , n− 1)1t.
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Second, for the velocity push, the truncation termdtttx(tn) has the additional terms for
time-independent fields denoted by:

ζx = Ä(x(tn))dttx(tn)× b̂(x(tn))+ v(tn) · (∇e(x(tn))
(46)+∇Ä(x(tn))v(tn)× b̂+Ä(x(tn))v(tn)×∇b̂(x(tn))).

Time-independent second-order solutions do exist without the new term,ζx, in the truncation
term,dtttx(tn)/24, in the velocity push; however, the coefficients have a functional form
1/( f − 1/2) and are singular atf = 1/2; therefore,ζx will be used. Incorporatingζx

and the fields modified by the derivatives of the fields into the previous injection method
(Section 3.2.3) yields:

v′ − vn− f = evc11t + tan(Ävc21t/2)(v′ + vn− f )× b̂v,

vn+1− f − vn− f = e1t + tan(Ä1t/2)(vn+1− f + vn− f )× b̂,

vn−1/2− v′ = b1(vn+1− f − vn− f )× b̂Ä1t
(47)

+ d7vn− f · (∇e+ (∇Ävn− f )× b̂+Ävn− f ×∇b̂)1t2,

xn − xn− f = c3vn− f/21t + b2
(
vn− f/2− vn− f

)× b̂xÄ1t2, and

vn− f/2− vn− f = exc41t + tan(Äxc51t/2)
(
vn− f/2+ vn− f

)× b̂x.

Here the parameters (b1 andb2), (c1, . . . , c5), vn− f/2, v′,Ä, b, andeare the same as defined
in Section 3.2.3 and the parameters (d1, . . . ,d7) are independent of1t . Again substituting
Eq. (47) into Eq. (20) and canceling all possible terms by choosing parameters results in a
second-order method for all time-independent field configurations, but a first-order method
for time-dependent fields. The truncation error for the post-injected position,Ex, is third-
order for time-dependent fields and fourth-order for time-independent fields. The truncation
error for the post-injected velocity,Ev, is second-order for time-dependent fields, and the
second-order term isdtttx(tn)/24 for time-independent field configurations. This method
(with d7 = 1/24) can be rewritten as:

v′ − vn− f = ev

(
f − 1

2

)
1t + tan

(
Äv

(
f − 1

2

)
1t/2

)
(v′ + vn− f )× b̂v,

vn+1− f − vn− f = e1t + tan(Ä1t/2)(vn+1− f + vn− f )× b̂,

vn−1/2− v′ = 1

24
(vn+1− f − vn− f )× b̂Ä1t

(48)

+ 1

24
vn− f ·

(∇e+ (∇Ävn− f )× b̂+Ävn− f ×∇b̂
)
1t2,

xn − xn− f = vn− f/2 f1t + f 2

12

(
vn− f/2− vn− f

)× b̂xÄ1t2, and

vn− f/2− vn− f = ex
f1t

2
+ tan(Äx f1t/4)

(
vn− f/2+ vn− f

)× b̂x,

using d1 = d2 = d3 = ( f − 1/2)/2 andd4 = d5 = d6 = f/3 in Eq. 45. Without a field
gradient this case reduces to the modified fractional time step Boris push (Section 3.2.3).

3.2.5. General second-order method.This is a method that is second-order for general
spatially and temporally varying fields. This method requires field values at a previous time
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as well as spatial derivatives ofB andE. Defining the field values to be used in this method
to be a combination of old, new, and spatial derivatives results in:

Äv = (1− t1)Ä(xn− f , n− 1)+ t1Ä(xn− f , n− 2)+ d1vn− f · ∇Ä(xn− f , n− 1)1t,

b̂v = (1− t2)b̂(xn− f , n− 1)+ t2b̂(xn− f , n− 2)+ d2vn− f · ∇b̂(xn− f , n− 1)1t,

ev = (1− t3)e(xn− f , n− 1)+ t3e(xn− f , n− 2)+ d3vn− f · ∇e(xn− f , n− 1)1t,
(49)

Äx = (1− t4)Ä(xn− f , n− 1)+ t4Ä(xn− f , n− 2)+ d4vn− f · ∇Ä(xn− f , n− 1)1t,

b̂x = (1− t5)b̂(xn− f , n− 1)+ t5b̂(xn− f , n− 2)+ d5vn− f · ∇b̂(xn− f , n− 1)1t, and

ex = (1− t6)e(xn− f , n− 1)+ t6e(xn− f , n− 2)+ d6vn− f · ∇e(xn− f , n− 1)1t.

For the velocity injection push, thedtttx(tn) truncation term for time-dependent fields con-
tains the same terms,ζx (Eq. (46)), as for time-independent fields in addition to the following
terms:

ζt = ∂te(x(t), t)+ ∂tÄ(x(t), t)v(t)× b̂(x(t), t)+Ä(x(t), t)v(t)× ∂t b̂(x(t), t). (50)

Thereforedtttx(tn) = dttx(t)× B+ ζx + ζt for general fields. Incorporating this into the
previous injection method given in Eq. (47) yields:

v′ − vn− f = evc11t + tan(Ävc21t/2)(v′ + vn− f )× b̂v,

vn+1− f − vn− f = e1t + tan(Ä1t/2)(vn+1− f + vn− f )× b̂,

vn−1/2− v′ = b1(vn+1− f − vn− f )× b̂Ä1t + d7vn− f ·
(∇e+ (∇Ävn− f )

× b̂+Ävn− f ×∇b̂
)
1t2+ t7

(
e− e(xn− f , n− 2)

(51)
+Ävn− f × (b̂− b̂(xn− f , n− 2))

+ (Ä−Ä(xn− f , n− 2))vn− f × b̂
)
1t,

xn − xn− f = c3vn− f/21t + b2
(
vn− f/2− vn− f

)× b̂xÄ1t2, and

vn− f/2− vn− f = exc41t + tan(Äxc51t/2)
(
vn− f/2+ vn− f

)× b̂x.

Here the parameters (b1 andb2), (c1, . . . , c5), (d1, . . . ,d7), vn− f/2, v′, Ä, b, ande are as
defined in Section 3.2.4, and the parameters (t1, . . . , t7) are independent of1t . Substituting
Eq. (51) into Eq. (20) and canceling all possible terms by choosing thet1, . . . , t7 parameters
results in a second-order method for arbitrary fields. The truncation error for the post-injected
position,Ex, is fourth-order for general fields. The truncation error for the post-injected
velocity,Ev, hasdtttx(tn)/24 as a second-order term. For this method to beO(1t2)accurate,
t1 = t2 = t3 = (2 f − 3)/4, t4 = t5 = t6= 2 f/3− 1 in Eq. (49), andt7 = 1/24 in Eq. (51).
Since the only difference between Eqs. (51) and (48) is the term with thet7 coefficient added
to the velocity update, this method will not be rewritten. With time-independent fields this
method reduces to the field gradient fractional time step method in Section 3.2.4.

3.3. Computer Performance of Injection

The more accurate pushes are computationally more expensive. An operation count for
the methods described here is given in Table I, in three spatial and velocity coordinates;
standard leap-frog is given as well. On contemporary computers the tangent function is by
far the most expensive part of the push. If the tangent is used, then the ratio of the speed
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TABLE I

Operation Count for the Different Methods

Discussed in the Text

Operation count

Method Addition Multiply Tan

Simple push 7 6 0
Fractional time step Boris push 43 56 2
Modified Boris push 89 105 3
Boris push with field gradients 110 129 3
Second-order method 123 155 3
Leap-frog 21 22 1

per each push is roughly proportional to the number of tangent function calls. Because
of the expense of the tangent call, a small angle approximation is almost always used for
time changing magnetic fields (if the magnetic field is time-independent then tan(Äδt/2)
can be calculated once and stored on a grid for spatially changing fields). If the small
angle approximation is used, the ratio of the multiplication operation count will roughly
be the ratio of the computation speed for each push. Therefore the fractional time step
Boris push, modified Boris push, Boris push with field gradients, and general second-order
method are about 2.5, 4.7, 5.9, and 7 times as expensive as leap-frog. Due to different
coding methods and compiler optimizations for implementing a push, a more accurate ratio
is hard to estimate. For example, for the leap-frog push there is generally not a function
call overhead for each particle; however, for our implementation, each injection push does
have a function call overhead. Also, more information is used in the higher order pushes,
past time field values, and derivatives of fields; the retrieval time from the main memory of
the computer may be a significant part of the time needed to calculate the injection push.
However, due to the increase in accuracy the time step could be increased by up to an order
of magnitude with the same error; see Figs. 9 through 11. The increase of the time step1t
is still limited by numerical instabilities; for example, in explicit leap-frog the time step
is still limited byωp1t < 2 whereωp is the plasma frequency. The increased expense of
calculating a higher order injection push is negated by a large savings in pushing particles
in the plasma bulk with a larger time step, assuming the bulk has many more particles than
are being injected each time step (it is difficult to construct a case where this is not true).
For single species diode simulation which will have the fewest number of bulk particles to
injected particles; the ratio can be as small as one hundred.

3.4. Results

The test cases analyzed here are special cases of the crossed-field diode [4, 12], illustrated
in Fig. 5. For clarity, examples will be given in one dimension (XPDP1 [11]); however, the
general second-order method is implemented in XOOPIC [32] and XPDP2 [33, 34] in
2D. A uniform time-independent external magnetic field,B, is imposed parallel to the
cathode surface alongz. Under a constant imposed voltage,V0, on the diode, the Hull field
[35], BH , is defined as the minimum field for magnetic insulation, such that one electron
leaving the cathode with velocityvx would just graze the anode,BH = (2mV0/|e|L2

x +
(mvx/|e|Lx)

2)1/2, wherem is the mass ande is the charge of an electron. The imposed
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TABLE II

A Summary of Parameters Used in the Three Test Cases

Case 1 Case 2 Case 3

ConstantE Gradient ofE OscillatoryE

mv2
0x/(2q) 0.5eV

mv2
0y/(2q) 0.5eV

Bẑ 337 G (|Ä| = 5.92617× 109 rad/s)
1t 5× 10−12 sec (|Ä|1t = 0.0296)
E0 −106 V/m −9.391× 104 V/m −105 V/m
E1 0 −4.49× 109 V/m2 0
ε 0 22.4824 0
ω 1 4.84580 1
Ẽ 0 0 1

magnetic field for all the cases is 1.5× 10−2% below the Hull field; hence, electrons are
collected by the anode. For emission below the limiting current,Jc [36], all the current
injected at the cathode propagates to the anode. This current is also known as the critical
current, the largest current where a steady state cycloidal flow exists. The definition of
critical current is also valid for solutions with fields larger than the Hull field where no
particle current is transmitted. The three imposed field test cases are idealized limits of
this diode, summarized in Table II. The self-consistent case, summarized in Table IV, is
a simulation near the limiting current slightly below the Hull field, then comparing with
theory [12] theL2 norm of the density for different injection methods and number of cells.

Case 1 approximates the initial condition (t = 0) in the gap. Initially, the gap is empty and
there is a large vacuum electric field with no gradient. Case 2 approximates the steady state
behavior of the gap for currents below the critical current. At steady state the electric field is
smaller than the vacuum case, and the electric field gradient is large near the cathode. Both
of these cases will be approximated by time-independent fields to simplify the problem.
Case 3, a time-dependent example, approximates the “oscillatory steady state” of a gap
with a current above the critical current. The fields are not self-consistent but oscillate
harmonically to make the analysis tractable. The frequency and amplitude of the electric
field oscillation for the third case were obtained from a self-consistent PIC simulation with
twice the critical current injected. Efficacy of injection methods will be compared. After
the injection push, the particles are pushed with leap-frog as usual.

The lack of an unmagnetized example is not an oversight; because an unmagnetized push
is a subset of the magnetized push, it is not done. These methods can be greatly simplified
for the unmagnetized case;vn+1− f is not needed for any of the pushes.

For the three test cases an analytic solution can be obtained. The equations of motion
describing the idealized cases are

ẍ(t) = q

m
(E(x, t)+ ẏ(t)B0) and

(52)
ÿ(t) = − q

m
ẋ(t)B0,

whereE(x, t) = E0(1+ Ẽ cos(ω′0t))+ E1x, andq andm are the charge and mass of the
particle, respectively. In terms of the dimensionless variables,x̃ = Ä2m/(q E0)x andt̃ = Ät
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with Ä = q B0/m (signed cyclotron frequency) results in

¨̃x(t̃ ) = 1+ Ẽ cos(ω0t̃ )+ ε x̃(t̃)+ ˙̃y(t̃)
(53)

¨̃y(t̃) = −˙̃x(t̃),

whereω0 = ω′0/Ä andε = (q/m)E1/Ä
2. The solution may be written in closed form for

this equation with the initial conditionsx(0) = 0,vx(0) = ẋ(0) = vx0, andvy(0) = ẏ(0) =
vy0.

x̃(t̃) = {[(vy0+ 1)
(
ω2− ω2

0

)+ ω2Ẽ
]
cos(ωt̃)− ω2Ẽ cos(ω0t̃)

+ (ω2− ω2
0

)
[vx0ω sin(ωt̃)− (vy0+ 1)]

}/(
ω2
(
ω2− ω2

0

))
ỹ(t̃) = {ωω0

(
ω2− ω2

0

)[−vx0+ (vy0(ω
2− 1)− 1)t̃ + vx0 cos(ωt̃)

]
+ω0

(
Ẽω2+ (ω2− ω2

0

)
(vy0+ 1)

)
sin(ωt̃)

− Ẽω3 sin(ω0t̃)
}/(

ω3ω0
(
ω2− ω2

0

))
(54)

ṽx(t̃) =
{
vx0ω

(
ω2− ω2

0

)
cos(ωt̃)+ [(vy0+ 1)

(
ω2− ω2

0

)+ ω2Ẽ
]

sin(ωt̃)

− Ẽωω0 sin(ω0t̃)
}/(

ω
(
ω2− ω2

0

))
ṽy(t̃) =

{[
(vy0+ 1)

(
ω2− ω2

0

)+ ω2Ẽ
]
cos(ωt̃)− ω2Ẽ cos(ω0t̃)

+ (ω2− ω2
0

)[
vy0(ω

2− 1)− 1− vx0ω sin(ωt̃)
]}/(

ω2
(
ω2− ω2

0

))
,

whereω2 = 1− ε. x̃(t̃), ṽx(t̃), andṽy(t̃) will be compared to the numerical calculation.
Figures 6 through 8 compare the accuracy of the first push. The error is normalized by the
1x,1vx, or1vy of leap-frog push; this effectively slides the vertical axes without changing
the shape of the graph. In other words, the normalization is reasonable but not unique. A
different normalization would change the magnitude but not the shape of the error. The

FIG. 6. The fractional error in the injected particle’s position and velocity with injection methods discussed
in the text for Case 1 (constant electric field). The Boris push with field gradients and the second-order method
are equivalent to the modified Boris push for this case; therefore, only the modified Boris push is shown.
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FIG. 7. The fractional error in the injected particle’s position and velocity with injection methods discussed
in the text for Case 2 (gradient of electric field). For this case the Boris push with field gradients is equivalent to
the second-order method; therefore, the second-order method is not shown.

horizontal axis is the time elapsed since the particle has been injected from the cathode.
Note that the error invy is dominated by thedtttx(t)1t2/24 term in the noncorrected
pushes. Figures 9 through 11 show the root mean squared truncation error averaged over
the fractional time step,

〈||E||〉 f =
∫ 1

0
||E|| d f, (55)

for the different cases as a function of1t . The lowest-order term in the RMS error is shown
in Table III. The leap-frog error is for a full time step. These figures were made by keeping

FIG. 8. The fractional error in the injected particle’s position and velocity with injection methods discussed
in the text for Case 3 (oscillatory electric field). The Boris push with field gradients and the modified Boris push
are equivalent for this case, the symbols overlap.
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TABLE III

A Summary of the Order of the Injection Methods Shown in the Text for Different

Cases, the Constant Can Be Found in Appendix B

Case 1 Case 2 Case 3

Simple push g11 g12 g13

Simple Boris push g211t g221t g231t
Modified Boris push g311t2 g321t g331t
Boris push with field gradients g311t2 g421t2 g431t
Second-order push g311t2 g421t2 g531t2

Leap-frog g611t2 g621t2 g631t2

FIG. 9. The error,‖E‖2, in the injection method averaged over the injection time during a time step with
injection methods discussed in the text for Case 1 (constant electric field). The Boris push with field gradients
and the second-order method are equivalent to the modified Boris push for this case; therefore, only the modified
Boris push is shown.

FIG. 10. The error,‖E‖2, in the injection method averaged over the injection time during a time step with
injection methods discussed in the text for Case 2 (gradient of electric field). The modified Boris push and the
fractional time step Boris push curves overlay. For this case the Boris push with field gradients is equivalent to the
second-order method; therefore, the second-order method is not shown.



PARTICLE SIMULATIONS 507

FIG. 11. The error,‖E‖2, in the injection method averaged over the injection time during a time step with
injection methods discussed in the text for Case 3 (oscillatory electric field). The Boris push with field gradients
and the modified Boris push are equivalent for this case which overlay the fractional time step Boris push.

one higher truncation error than the lowest order term; because of this, these figures may
be inaccurate asÄ1t approaches one.

The reason that injection push error is substantially larger than the leap-frog push in
Case 3 as compared to Cases 1 and 2 is that the time-dependent field is being extrapolated
to a future point which incurs a larger error.

For models with cathode-field characteristics similar to one of the cases presented here
using the truncation error can determine whether the injection push error is negligible. For
example, assume for the moment that a fractional time step Boris push has been imple-
mented. Using the electric field given in Case 2,E0 = 9.391× 104 V/m, the gradient of
the electric field which would result in one hundred times the error over implementing the
field gradient injection push is

g221t ≥ (100)g421t2, (56)

whereg22 and g42 are defined in Appendix B. By reducing1t this relationship will be
satisfied for some1t ; however, because of the other constraints in the bulk plasma requiring
1t to be 1× 10−12 s, then Eq. (56) is satisfied if the normalized electric field gradient is
between−2.25 (4.00× 1011 V/m2) and−0.14 (2.52× 1010 V/m2). For all other values
of the electric field gradient it is more than one hundred times more accurate to use the field
gradient push.

The above analysis is only the push truncation error and does not take into account the
feedback of the coupling of the particles to the fields. The injection push is important when
space charge is important and the error propagates through the system due to the error in
the fields as well as the particles directly.

When a lower order or a non-time-centered push is used, the effects of the discrete time
steps can be severe. For the examples shown here, there are gaps in particle positions between
the time steps; if the field was chosen so that it decelerated the injected particles, particle
positions from different time steps would have overlapped. This is a source of “noise” when
these particles are weighted to the grid.

For the self-consistent simulation (all the parameters are shown in Table IV) the externally
imposed magnetic field of 336G is 0.371% below the Hull field and the injected current of
16705 A/m2 is 2.50% below the critical current. Therefore, all the current injected at the
cathode is collected by the anode.
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TABLE IV

A Summary of Parameters Used in the Self-Consistent Case

Physical parameters mv2
0x/(2q) 0.5 eV
Bẑ 336 G(|Ä| = 5.9086× 109 rad/s)
V0 −104 V
L 0.01 m
J 16705 A/m2

Physical scaling BH ẑ 337.25 G
parameters Jc 17133.81 A/m2

Numerical parameter 1x 1.22070× 10−6 m

The convergence in the cell size1x is limited by the cold beam nonphysical instability
[10] proportional to1x, whereas the accuracy of the field solve is1x2. This instability
only occurs for a cold beam; we are using this cold example because we have a closed form
for the solution. To reduce the effect of the cold beam instability, 8192 cells are used in
the simulation of the crossed-field diode. This adds a fixed error in the simulation based
on the grid error from the instability rather than the truncation error of the method. The
L2 norm of relative error‖nPIC/nt − 1‖2 is shown in Fig. 12 as a function of the time step
in the simulation. This figure shows the error decreasing for the second-order (the general
second-order method and the field gradient fractional time step Boris push because the
problem is time-independent) injection method as1t2, first-order (modified fractional time
step Boris push and fractional time step Boris push) injection methods1t , and the zeroth-
order (simple injection push) injection method not decreasing. Since the size of the cell1x
is not changing there is a constant error with respect to changing the time step1t . TheL2

norm of the relative error due to the grid is approximated by theL2 norm of the simulation
run withÄ1t = 9.2× 10−4 to be about 4.74× 10−4. A fit to error of the second-order
methods and first-order methods with the constant error (4.74× 10−4) from the grid is also
shown in Fig. 12 and is labeled second order fit and first order fit, respectively.

FIG. 12. TheL2 norm of the relative error(‖nPIC/nt − 1‖2) in the diode for injection method given in the text
for the self-consistent case. The fractional time step Boris push and the modified Boris push data points overlay
each other in the plot because they are both first order. The second-order injection and the Boris push with field
gradients data points overlay each other. Both of these methods are second order because this simulation has
reached a steady state. For smaller time steps1t the error is dominated by the cell size1x error which is fixed
for all the data. The fits to the data take into account the error associated with the cell size.
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4. CONCLUSIONS

Giving attention to detail, the authors have found methods that are second-order accurate
for the inversion of loaded and injected distributions of particles. The inversion process is
limited to Maxwellian distributions and fluxes, both full distributions and arbitrary cutoff
at a lower and upper velocity. The second-order injection method starts for an arbitrary
position and velocity at the same time and results in a position and velocity half a time step
apart, with an error consistent with the standard leap-frog integrator.

A number of common cases demonstrate sensitivity to low-order injection schemes. We
have shown that using a higher order method is far more effective in obtaining a more
accurate result than decreasing the time step with a lower order method. Use of these
methods does not significantly increase the run time of the simulation, unless the number
of particles injected is comparable to the total number of particles in the simulation.

APPENDIX A

Effects of Discretizing Distribution and Fluxes

One of the consequences of inverting the distribution function with a finite number of
points is that the Maxwellian has an effective upper cutoff. The maximum size of the array
is determined by the desired resolution of the tail of the distribution. For example, ifvmax

is the largest velocity that can be chosen, the probability that a particle lies beyondvmax is∫∞
vmax

f (v) dv (or
∫∞
vmax
v f (v) dv for a flux). Increasing the number of bins used beyond where

the probability of a single bin is less than the probability beyondvmax is ineffective because
the fraction neglected is much larger than the error made due to the numerical method.
The velocity index is constructed by choosing a pseudorandom number and multiplying by
the number of bins. The velocity is computed by a linear interpolation between the array
values indicated by the index.4

To calculate the number of bins needed, several different measures of the error have been
used to quantify the error. Thelocal moment errorof thenth velocity moment is the error
in each bin, which can be written as

LME =
∫ v+1v

v

vn( fbin− fanal) dv, (A.1)

where fbin is the normalized distribution formed by the linear interpolation of the array,
fanal is the desired normalized distribution,1v is the width of the bin, andn is the velocity
moment. The difference in moments integrated over the entire distribution is:

moment error=
∑
bin

∫ v+1v

v

vn( fbin− fanal) dv =
∫ vcu

vcl

vn( fbin− fanal) dv. (A.2)

The L2 norm of the difference of the moments in one bin will also be used for a measure

4 Consider calculating a new pseudorandom number for interpolation because high bits in many random number
algorithms are more “random” than low bits. In other words, useR1 to choose the bin and thenR2 to interpolate
between bins.
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FIG. 13. The absolute error in the zeroth, first, second, and third moments as a function of the number of bins
for a Maxwellian flux withv0 = 1 andvc = 3 (normalized by

√
2vt i ).

of the error which will be called thelocal squared moment error:

LSME=
√∫ v+1v

v

v2n( fbin− fanal)2 dv. (A.3)

The tolerance, T, is defined as theL2 norm over the entire distribution:

T =
√√√√∑

bin

∫ v+1v

v

v2n( fbin− fanal)2 dv =
√∫ vcu

vcl
v2n( fbin− fanal)2 dv. (A.4)

These measures of merit can be calculated numerically. Examples of Maxwellian flux with
v0 = 1 andvc = 3 are shown in Figs. 13 and 14. The LME shows the integrated error
in each bin, which mostly cancels out. In contrast the LSME does not have errors that
cancel. The error in the moments of the distribution is plotted as a function of the number
of bins used in Fig. 13. This can be compared to the tolerance as shown in Fig. 14. The
error in the moments and the tolerance decrease as (number of bins)−2, since the numerical
inversion, both the tabulation and the interpolation, is second-order accurate. Hence for a
Maxwellian distribution, for which the tail does not need to be resolved, a modest number
of grids can give adequate accuracy. An easily analyzed expression for accuracy has not

FIG. 14. The tolerance for the zeroth, first, second, and third moments as a function of the number of bins for
a Maxwellian flux withv0 = 1 andvc = 3 (normalized by

√
2vt i ).
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been found but minimal requirements are not difficult to meet. For a Maxwellian flux the
corresponding graphs to Figs. 13 and 14 would have the same slope; however, the error
is slightly larger for the same moment and number of bins. A few hundred points with
interpolation should handle any Maxwellian-like (continuous with finite first and second
derivatives) distribution.

APPENDIX B

Truncation Error Constants

This appendix list the constants for the truncation error for the methods and cases in the
body of the article; for definitions ofg’s see Table III.

Case 1.

g11 =
(√

3+ 13v2
x0+ 11vy0+ 13v2

y0

)/
(2n1

√
15),

g21 = 1

24

√
23

14
,

g31 = 1

288n1

√
35

√
31713+ 1631v2

x0+ 12042vy0+ 1631v2
y0, (B.1)

g61 = 1/(12n1), and

n1 =
√
v2

x0+
(
1+ v2

y0

)2
.

Case 2.

g12 =
√

3+ 13v2
x0+ 11vy0+ 13v2

y0

/
(2
√

15n2),

g22 =
√

115+ 8ε(104ε − 73)vx0+ 115(1+ vy0)2
/
(24
√

70n2),

g32 =
√

13

70

|εvx0|
3n2

,

g42 =
(
5ε2
(
38929v2

x0+ 48528(1+ vy0)
2
)+ 9

(
31713+ 1631v2

x0
(B.2)

+ vy0(12042+ 1631vy0)
)− 6ε(14689vx0− 6(1+ vy0)

× (13518+ 1877vy0))
)1/2/

(864
√

35n2),

g62 =
√
ε2v2

x0+ (1+ ε(1+ vy0))2/(12n2), and

n2 =
√
v2

x0+
(
1+ v2

y0

)2
.

Case 3.

g13 =
√

6+ 3Ẽ2+ 26v2
x0+ 22vy0+ 26vy0

/
(2n3

√
30),

g23 =
√(
(230+16ε(104ε−73))v2

x0+230(1+vy0)2+ Ẽ2
(
115+1984ω2

0

))/
(48n3

√
35),

g33 =
√

26ε2v2
x0+ 31Ẽ2ω2

0

/
(6n3

√
35),
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g43 =
√

31

35

|Ẽω0|
6

,

g53 =
(
10ε2

(
14264Ẽ2+ 38929v2

x0+ 48528(1+ vy0)
2
)

+ 18
(
31713+ 1631v2

x0+ vy0(12042+ 1631vy0)
)

(B.3)
+ Ẽ2

(
285417− 633751ω2

0 + 1288224ω4
0

)
− 12ε

(
14689v2

x0− 6(1+ vy0)(13518+ 1877vy0)

+ 18Ẽ2
(
4382ω2

0 − 2253
)))1/2/

(864n
√

70),

g63 =
(
2+ ε2

(
Ẽ2+ 2

(
v2

x0+ (1+ vy0)
2
))

+ 2ε
(
2+ Ẽ2+ 2vy0− Ẽ2ω2

0

)+ Ẽ2
(
1− ω2

0 + ω4
0

))1/2/
(12n
√

2), and

n3 =
√

Ẽ2

2
+ v2

x0+
(
1+ v2

y0

)2
.
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